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Steady currents induced by oscillations round islands 
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An oscillating current such as a tidal stream or an inertial oscillation may have 
a horizontal scale of the order of many times the local depth of water. Thus an 
island projecting from an otherwise uniform sea bed will give rise to a local, 
periodic disturbance near the island. It is shown that this disturbance may be 
resolved into two waves travelling in opposite senses round the island. If  the 
particle orbits a t  large distances are circular, then only one of these waves has 
non-zero amplitude. 

In  addition to the oscillatory motion, however, there is a steady d.c. streaming, 
or mass-transport velocity, whose magnitude is of order uZlaa where u denotes 
the magnitude of the oscillatory velocity a t  large distances, u denotes the radian 
frequency, and a is the radius of the island. In this paper the profile of the 
streaming velocity is calculated for circular islands, with or without shoaling 
regions offshore. It is shown that resonance with the free modes trapped by the 
shoaling regions may greatly increase the streaming velocity. Viscosity (or 
horizontal mixing) also tends to increase the streaming velocity close to the 
shoreline. 

The conclusions are supported by some simple model experiments. It is sug- 
gested that such streaming may partly account for the observed pattern of 
currents near Bermuda. 

1. Introduction 
The best-known example of a steady, rectified flow associated with an oscil- 

latory motion is the mass-transport velocity in a progressive water wave, first 
discovered by Stokes (1847); (see also Longuet-Higgins 1953, 1960). It has been 
pointed out by Longuet-Higgins (1969 b)  that significant rectified flows are also 
to be expected in many types of long-period, oscillatory ocean currents, par- 
ticularly in tides, internal waves and motions depending on bottom topography, 
such as double Kelvin waves. t 

The aim of the present paper is to consider another topographic effect, the 
effect of an island which projects from the sea bed in an otherwise uniform, 
oscillating current. 

Assuming the displacement in the initial oscillation to be small compared to 

t Mass-transport in tidal flows was first considered by Hunt & Johns (1963). Pedlosky 
(1965), Robinson (1965, ch. 17, pp. 504-533) and Munk & Moore (1968) have suggested 
mass-transport effects in other types of current, but for a criticism of their analysis see 
Moore (1969). 
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the radius of the island, the first problem to be considered is the linear response 
of the fluid near the island to a forced oscillation in the ocean at  large distances. 
This problem is solved in 0 2 below, for islands with vertical sides. For a circular 
island it is possible to evaluate the local disturbance caused by the island in very 
simple terms. Particularly, when the currents at  large distances are inertial, it  
turns out that the disturbance is seen locally as a wave progressing anticlockwise 
round the island, in the northern hemisphere; the tangential velocity at  the 
boundary is just double what it would be in the absence of the island. 

The second-order currents associated with this flow are considered in $3 .  It 
is shown that the rectified flow outside a thin viscous boundary layer consists 
of a current circulating anticlockwise round the island and falling off rapidly with 
radial distance, like the inverse fifth power of the radius at  first. But inside a 
thin viscous boundary layer, the mass-transport current is reinforced by viscosity. 
In fact the effect of viscosity is to multiply the non-viscous streaming velocity 
just beyond the boundary layer by a factor 3 independent of v. This effect is 
analogous to the effect of the viscous layer on the bottom in a progressive water 
wave (Longuet-Higgins 1953), experimentally verified by Allen & Gibson (1959) 
and others. After some time, the vorticity introduced by the viscous boundary 
layer diffuses outwards throughout the interior of the fluid, augmenting the 
initial circulation. 

Some simple experiments to test this theoretical prediction are described in 
0 4 of the present paper. 

So far the discussion has referred to islands with vertical sides. On the other 
hand, when the island is surrounded by a shallow region or ‘skirt ’, the possibility 
arises of free waves becoming trapped near the island, as was shown by Rhines 
(1969) in a particular case. Moreover, the amplitude of the forced oscillations 
may increase greatly near the resonant frequencies. In  $5 we calculate both the 
amplitude of the forced oscillations and the magnitude of the steady mass- 
transport associated with them. Figure 6 is a typical plot of the relative magnifica- 
tion near the resonant frequencies. A simple model experiment is described in 
0 6, in which oscillations were set up in a rotating basin containing islands of 
various shapes. Strong currents were observed to be circulating round the islands, 
consistent with the above predictions. 

The possible connection of this phenomenon with the observed pattern of 
currents near Bermuda is discussed in 0 7. 

2. Forced oscillations round a cylindrical island 
We imagine an island with vertical sides, in an ocean of locally uniform depth h, 

in which there exists a large-scale system of oscillating currents. The latter may 
be inertial oscillations, tidal waves, planetary waves or other types of large-scale 
oscillation, and may be generated, for example, by tidal or atmospheric forces. 
The purpose of this section is to calculate the local effect of the island on this 
large-scale system of currents and in particular to find the form of the surface 
elevation at the edge of the island itself. 

We shall suppose that the differential equation governing the surface elevation 
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6 is the classical equation for long waves of small amplitude oscillating har- 
monically with radian frequency CT, in an ocean of uniform depth h and constant 
Coriolis parameter f,  that is to say 

( V 2 + ! y ) 5 =  0 

(see Lamb 1932). The associated current-vector u is given by 

where f denotes the vertical vector of magnitude f. We assume that v2 + f 2 ,  

in general, but when it is appropriate we shall take the solutions to the limit as 
CT -+ & f, bearing in mind that the limit may be singular. 

Now for most applications, and certainly with islands of the dimensions of 
order 100 km the scale of the local disturbance will be exceedingly small compared 
to .J(gh)/f- Since CT is assumed to be of the same order asf, it  follows that in (2.1) 
the second term is negligible for practical purposes, and that 6 satisfies simply 

(2.3) 
Laplace’s equation, v y  = 0. 

In the present context (2.1) may be called the exact differential equation 
for 5 and (2.3) the approximate equation. A solution of the exact equation does 
exist representing waves trapped round a circular island (Longuet-Higgins 
1969a). We shall find solutions to the approximate equation, and show that they 
do tend, in one case of special interest, to the corresponding exact solution. 

Suppose first that we have a circular island of radius a. Let the rectangular 
components (u, v) of the current at  large distances r from the centre of the island 

5 7 (2.4) be given by = A e-iut = B e-iut 

where A and B are complex constants. It is understood that the real part of the 
expressions on the right is to be taken. The radial and tangential components 
of velocity are then given by 

’ }  (2.5) 
up = u cos 0 + v sin 0 = C ei(@-ct) + D e-i(@+ct) 

ue = - u sin 0 + v cos 0 = iC ei(8-4 - iD e - W f 4 ,  

where C = $ ( A  -iB) and D = &(A +iB). In  other words, the motion can be 
formally separated into two component waves, one with complex amplitude C ,  
rotating clockwise round the island (when CT < 0), the other with complex 
amplitude D,  rotating anticlockwise. 

To find the corresponding surface elevation we take (2.2) in the form, 

and assume that c vanishes at the origin. It follows that the surface elevation 
c,, in the absence of the island is given uniquely by 

gc0 = i ( ~ ~ + f ) C r e ~ ( @ - ~ ) + i ( a - f )  Dre-i(o+”t). (2.7) 
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In  inertial oscillations, go vanishes. Such motion can be represented either by 
C = 0 and (r = f or alternatively by D = 0 and a = - f. 

Now to take account of the presence of the island we add to (2.7) a surface 
elevation of the form, 

(2.8) 

in which the constants P and Q are to be chosen so as to make the normal com- 
ponent of velocity vanish at  the circumference r = a. Thus 5 = C0 + el must satisfy 

qCl = P(a2/r) ei(o--ot) + &(az/r) e-W+4 

Hence -(a2-f2)C-i((r+f)P = 0,  (2.10) 

P = - - i (~ - f )C ,  Q = - i (a+f)D.  (2.11) 

with a similar equation for Q .  Solutions of these equations are 

Therefore altogether we have 

g5 = i[ (cr+f)r-  (a-f) (a2/r)] Cei(o-ut)+i[(rr-f)r+ ((r+f) (a2/r)]De-i(0+.t). 
(2.12) 

At the perimeter of the island this reduces to 

g6 = 2ifa[C ei(8-d) - D e-i(o+ut) I. (2.13) 

Thus if u, denotes the transverse component of the velocity at infinity, the 
surface elevation at  the edge of the island is simply given by 

gg = 2afum. (2.14) 

In  the important case of inertial oscillations we take D = 0 and a + - f in  

g< = 2ifC(a2/r) ei(o-ut). (2.15) 
(2.12), giving 

Thus, for inertial motions, the surface elevation progresses round the island in the 
clockwise sense, in the northern hemisphere. Since in this case go vanishes, the 
surface elevation is given by el, alone. 

To find the components of velocity ( u ~ ,  uo) near the island, some care must be 
taken. The exact expressions 

t (2.16) 

may be used only when (r2 + f 2 .  However, if we substitute in (2.16) from (2.12), 
we obtain in the general case, 

(2.17) 



Steady currents induced by oscillations round islands 705 

It is remarkable that this solution is formally independent of the Coriolis para- 
meter f and of the frequency cr. To find a solution for inertial motions we again 
let D = 0 and cr = - f giving 

(2.18) 

2 

1 

0. 1 2 3 4 

r la 
FIGURE 1. Graphs of the radial and tangential components u,., u0 of the orbital velocity 
in an oscillation in the neighbourhood of an island of radius a. The associated surface 
elevation is also shown. 

These expressions for ur, ug and 6 are illustrated in figure 1. A t  the circumference 
of the island equations (2.18) become simply 

u., = 0, ue = 2iCeW3-4. (2.19) 

Comparing this with (2.5) we see that the presence of the island exactly doubles 
the transverse component of velocity at  the perimeter. 

It may be noted that (2.15) is also the first term in the asymptotic expansion 
of the exact solution of (2.1), namely, 

qg = 2ifC ka2Kl(kT) ei(e-gt), (2.20) 

where (2.21) 

This represents a mode trapped exponentially at  large distances from the island 
(Longuet-Higgins 1969~).  Equation (2.15) is thelimit of (2.20) when af/J(gh)  -+ 0. 
The expressions for the currents, (2.18), also correspond to (2.7) of the paper just 
referred to, if the constants in the factors (1 & u2/r2) are replaced by terms varying 
only logarithmically with r. 

45 F L M  42 
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Because in the present approximation the surface elevation c satisfies Lap- 
lace's equation ( 2 . 3 )  it is simple to extend these results to islands of other shape, 
by a conformal transformation. The boundary condition u . n = 0 is transformed 
into the same condition at  all non-singular points of the boundary, by (2.2). For 
example, the exterior of the elliptic island, 

3 + - = 1  Y2 ( a > b > O ) ,  
a2 6 2  

having principal axes a and b, is transformed by the substitutior 

h = p+iv ,  

into the exterior of the circle, 

(2.22) 

(2 .23)  

(2.24) 

Moreover, at infinite distance from the island, x N &A. So the corresponding 
expression for < is of the same form as for the circular island, but in terms of A, 
not z. To obtain the corresponding expressions in terms of x and y we replace h 
by that solution of the quadratic equation, 

h2+(2 /c ) zh+1=  0,  (2 .25)  

which tends to infinity as z -+ co. The expressions for the currents follow from the 
formula, 

d h  dx (2 .26)  

From this solution it can be shown that u, v and care in antiphase at  diametrically 
opposite points on the island, and that currents of near-inertial frequency are 
associated with a surface elevation which travels anticlockwise round the ellipse, 
as for the circle. 

Similar transformations may be devised to cope with islands of more com- 
plicated shape. For more than one island (the 'archipelago problem '), extended 
techniques are available from potential theory. But in such a case variations of 
depth between the islands are likely to prove important also. 

As suggested earlier (1969a), it is possible to understand the energy in the 
frequency-band centred on 0-73c.p.d. at  Oahu as the local manifestation of 
near-inertial currents on a wider scale surrounding the island. The observed 
phase difference of about 130" between Mokuoloe and Honolulu (Mokuoloe 
leading) can be interpreted as due to the tendency of the surface elevation to 
progress round the island in the clockwise direction. Although the angle sub- 
tended a t  the centre of the island by Mokuoloe and Honolulu is only about 40°, 
the difference may be explained by the tendency of some energy to be guided 
round the elongated ridge on which Oahu stands. 



Steady currents induced by oscillations round islands 707 

It should be stressed that motions of near-inertial frequency are not necessarily 
uniform currents, as is often supposed. The inertial frequency is the limiting 
frequency for many other types of motion, including internal waves and motions 
trapped by topography and p-effect. The possibility that they are internal waves 
cannot yet be dismissed. A n  interesting experimental program awaits those who 
wish to investigate the matter further. 

3. Mass-transport currents 
Let u denote any time-periodic velocity field such that to the first order in 

the amplitude the mean velocity ii vanishes. If the (second-order) mean velocity 
of a marked particle (the Lagrangian mean velocity) be denoted by fi,, and the 
(second-order) mean velocity at  a fixed position (the Eulerian mean velocity) 
be denoted by BE,  then it can be shown (see Longuet-Higgins 1953) that 

EL = a,+ u, (3-1) 

where u = J-udt.Vu. (3.2) 

The quantity U has been called the Stokes velocity (Longuet-Higgins 1969b) 
after G. G. Stokes, who first evaluated this term for surface waves on water. 

When the motion is practically two-dimensional, as in the present application, 
the two components U ,  V of the Stokes velocity may be expressed in terms of 
a stream-function $s (cf. Longuet-Higgins 1953) as follows: 

where 

In  the radial co-ordinates 
expressions are 

where 

$s = u j v d t  = - j u d t v .  (3.4) 

suited to the present problem, the corresponding 

For the simple progressive motion given by (2.18) we have 

where a star denotes the complex conjugate quantity. From (3.5) it follows that 
U,, = 0, as we should expect from symmetry, while 

Thus the Stokes velocity is altogether tangential and falls off like the inverse 
fifth power of the radial distance r. At the circumference of the island (r = a) 
we have 

U, = 2CC*/ar. (3.9) 
45-2 
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To find either uL or uE we must employ the full dynamical equations for the 
mean motion. The motion is in effect two-dimensional and hence by analogy 
with surface waves on water (Longuet-Higgins 1953, $4)) or otherwise, the dif- 
ferential equation €or the stream function lCrE of the Eulerian mean flow is 

(3.10) 

Initially, if the motion is irrotational, we expect that $E = 0 everywhere, that 

(3.11) 

except near the boundary of the fluid. The subsequent development of the motion 
represents the diffusion of velocity outwards from the circumference of the island. 

Near the boundary r = a, we expect a boundary layer of the type described 
in Longuet-Higgins (1953, $7) .  It is shown there that if the first-order normal 
and tangential velocities are given by qn and q, respectively then just beyond the 
boundary layer there is a tangential velocity given by 

(3.12) 

(Zoc. cit. equation (189))) the co-ordinate s being measured tangentially to the 
boundary. In  the present problem, we replace qs by u, and s by a0. Thus 

(3.13) 

For the progressive wave described by (2.19) we find then 

U L  = 5CC"/au, (3.14) 

which is to be compared to the non-viscous value given by (3.9). In other words, 
the presence of a viscous boundary layer increases the velocity near the boundary? 
in the ratio 512. 

Is a final steady state possible? Writing a/at = 0 in (3.10) we find that $E 

has to satisfy the biharmonic equation in two dimensions, and therefore 

llf = Pr210g r + Qr2+ R logr + S, (3.15) 

where P, Q, R, S are arbitrary constants. If u, is to vanish at infinity, P and Q 
must both be zero. The value of S is immaterial, and if the boundary condition 
at r = a is to be satisfied we must have 

R = 3CC*/a, (3.16) 

t These paradoxical effects have bcen well verified by experiments in the case of water 
waves; see Russell & Osorio (1958); Allen & Gibson (1959). In  the case of progressive 
waves it has been found experirncntally that equation (3.12) is valid also for turbulent 
flows. A theoretical justification, (based on the assumption that the eddy viscosity is some 
function of the distance from the boundary) is given in an appendix to the paper by 
Russell & Osorio (1958). 
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so that the transverse component u, of the Lagrangian mean velocity is given 
ultimately by 2a5 3a CC* 

u,= (-&++ a u  (3.17) 

More generally, when the motion consists of two progressive waves travelling 
in opposite directions (see (2.17)) then substitution in (3.6) gives for the Stokes 
velocity 

(3.18) 
a4 

$8 = ~ (CC* - DD*) + (cD* e2i0 - C*D e-2io). 
2ur4 

FIGURE 2. Graphs of the initial and final Lagrangian mean velocities uL round an island 
of radius a, as a function of r/a. 

When the amplitudes of the two waves are equal (CC* = DD*), the first term 
vanishes, and taking the origin of 19 and t ,  so that C and D are real and equal, 
we have 

II., = - (- - 1) ~ 2 s i n  219. (3.19) 
i a4 
(T r4 

This represents a kind of dipole motion. 

layer : 
Similarly, (3.13) gives in general for the velocity just outside the boundary 

u, = - 5 (CC* - DD*) + - 3 (CD* e2ie- C*D e-2ie). 
a u  a u  

(3.20) 
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When, as before, C and D are real and equal, 

3c2 
uL = -sin28. 

acr 
(3.21) 

The result is similar to the streaming first found by Schlichting (1932) to 
occur in the presence of an oscillating cylinder. See also Batchelor (1967, ch. 5 ) .  
The fluid enters the boundary layer at  8 = 0" and 180" in the plane of oscillation 
and leaves it at  the intermediate points 8 = f 90". 

It will be noticed that we have neglected friction on the bottom and taken into 
account only the friction at  the vertical sides of the island. This may be justified 
if the vertical mixing is small compared to the horizontal mixing. 

4. Experimental verification (i) 
So long as the flow is practically two-dimensional and non-divergent, the 

mass transport currents depend only on the relative motion between the axis 
of the cylinder and the fluid at  infinite distance. Hence these currents should 
be the same as if the fluid at infinity were stationary and the island were made to 
oscillate in a horizontal plane. 

The latter arrangement is the more conGenient experimentally. Accordingly, 
the author constructed a mechanism (shown in figure 3(a) ,  plate l ) ,  whereby a 
cylindrical can of radius a = 3in. and length gin. could be made to oscillate so 
that its axis described a smaller vertical cylinder of radius b = 4 in. Throughout 
the oscillation the orientation of the can remained fixed. This was achieved by 
fixing the cant to a rectangular frame pivoted on four joints, each of which was 
made to oscillate in parallel by four gear wheels driven from a central vertical 
shaft. This vertical shaft was driven by a bevel gear attached to a horizontal 
shaft, which in turn could be operated either by hand or by attachment to an 
electric motor. 

The whole apparatus was then supported on two angle pieces laid across the 
top of a circular tank of diameter 30in., as in figure 3 ( b ) ,  plate 1. The tank was 
filled with water to within 1 in. of the top of the can. With a s-yringe, some dilute 
ink was injected into the water close to the surface of the can and near its centre. 
The can was then made to oscillate by turning the handle as shown, or with an 
electric motor. The time t required for the ink to make a complete circuit was 
measured with ;t stop-watch, and also the mean period T of the first ten 
oscillations. 

According to § 3 above, the magnitude [ C( of the relative velocity between the 
fluid a t  infinity and the axis of the cylinder is equal to ub. Hence the streaming 
velocity just outside the oscillatory boundary layer is equal to 5ub2/a by (3.14). 
It follows that the time taken for a marked particle of fluid to complete a circuit 
of the cylinder, just outside the oscillatory boundary layer, is just equal to 
a2/5b2 periods of the oscillation. This result is independent not. only of the 
viscosity but also of the period of oscillation, within the range of the present 
approximations. 

t Kindly supplied by my wife. 
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Corresponding to the apparatus described above we have alb = 6; hence the 
time required for a circuit is 62 i 5 ,  that is 7.2, periods. 

This simple result in practice is slightly complicated by the following con- 
siderations : 

(i) The radius of the outer cylinder is finite. This introduces errors of order 
a2/A2 where A is the radius of the outer cylinder. 

(ii) The surface is free. This introduces errors of order g2a/g, where g denotes 
the acceleration of gravity. 

(iii) The amplitude of the motion is finite. This introduces relative errors of 
order b/a. 

(iv) The thickness of the oscillatory boundary layer, though small, is finite. 
This introduces errors of order &/a, where 6 = (v /a) i .  

(v) Outside the boundary layer the motion is not steady until a time of order 
( r  - a)21v after starting. 

The presence of these errors, especially (iii), leads us to expect discrepancies 
of the order of 10 % between the observations and the simple theory of $3. 

Nevertheless, the experiment was tried. On starting the motion from rest by 
running the motor so that the mean period T of the first ten oscillations lay 
between 1.37 and 6.91 sec, it  was found that the time taken for the first trace of 
dye to orbit the can lay always between 5-4 and 8.8 periods of oscillation with a 
mean of 7.3 periods (see table 1). The agreement was thus at least as good as 
expected. 

T 
(see) 
1.37 
1.81 
2.58 
3.52 

4.65 

5.30 

6.91 

N Serial number 
(=  tlT) of observation 

5.4 3 
6.8 2 
7.9 1 
6.9 4 
8.1 
6.2 
8.2 
7.3 
8.8 

TABLE 1. The observed number N of cycles taken by a particle to make a complete circuit 
of the cylinder in figure 3 

5. Islands with sloping sides: free oscillations 
So long as the sides of the island are vertical it  is impossible for free waves to 

be trapped near the island unless the horizontal dimensions of the ocean are a t  
least of order d(gh)/f (see Longuet-Higgins 1969 a) .  This restricts the practical 
possibility of wave trapping with vertical sides to baroclinic motions. 

The situation is quite different if the island is surrounded by a sloping shelf 
or ‘skirt’. Then trapping becomes reasonably possible, and a double infinity 
of free trapped motions appears. An example restricted to the case u 4 f has 
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been studied by Mysak (1967). Rhines (1967,1969) has considered a more general 
case when the depth h(r) is assumed to be given by 

(5.1) 1 0 

/h, 
(0 < r < a) ,  

h = hl(r/a)a (a < r d  b) ,  

(b  d r < a), 
(see figure 4)) a being any positive constant.? When a < 1 the sloping 'skirt' 
is concave upwards; when a = 1 the skirt is conical; and when 01 > 1 it is convex. 
Continuity of h a t  r = b requires that h, = h,(b/a)". 

(a) a=+ 2a 

- - 2b 

(b) a=l 

(c) u=4 

FIGURE 4. Cross-section of the model island with a 'skirt' given by (5.1) in three typical 
cases: (a) a: = 8, ( b )  a = 1 ,  (c) a = 4. 

Rhines (1969, pp. 195-198) has considered the scattering of a Rossby wave by 
an island of the above form. Here we shall assume a simple model in which f 
is constant, and we shall consider simply the response to an oscillation whose 
form a t  infinity is given by (2.4) or (2.5). We shall then proceed as in $ 3  t o  
calculate the corresponding mass transport velocities. Owing to the possibility 
of resonant excitation of the free modes, the mass-transport can be very greatly 
amplified. 

Neglecting the dynamical effect of the horizontal convergence (which serves 
only to increase the hydrostatic pressure), we may assume the existence of a 
stream function $ such that 

t Rhines treated especially the case a = t .  Phillips (1966) considered the motion in an 
annular region between two concentric cylinders, when a = 2. 
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From the conservation of potential vorticity it follows that $ has to satisfy the 
differential equation, 

where f denotes the vector of magnitude f directed vertically. We now seek 
solutions to this equation in the form, 

(5.4) @ = $( r )  eiW-rt) 

where n is a positive integer. We are particularly interested in the case n = 1. 
It follows that in the sloping region a < r < b, $ must satisfy the ordinary dif- 
ferential equation, 

In  the constant-depth region r > b we use the same equation but with a set 
equal to 0. We have further to satisfy the boundary conditions that 

$ + o  (r + a,,) 

i d$ $, - continuous (r -+ b),  dr (5.6) 

$ N Crn (r+ W).) 

$ = Pl(r/a)P1 + P2(r/a)Pz, 
The differential equation (5 .5)  i s  satisfied by taking 

(5.7) 

where Ill, P2 are arbitrary constants and p l ,  p 2  are the roots (assumed different) 
of the quadratic equation, 

p 2  - a p  + n(n + af/a) = 0. ( 5 . 8 )  

Thus P,>P2 = h k P, (5.9) 

where ,G'= (nZ+naf/a+a2/4)4 (5.10) 

provided p =l= 0. The boundary condition at  r = a is satisfied by taking 

say. Then we have 
Pl = -P2 = P,  

$ = 2 P ( r / ~ ) ~ ' ~ s i n h  [pln (ria)] (a < r 6 b). (5.11) 

When r > b, the differential equation and the boundary condition at infinity are 

$ = Crn + Qr-", (5.12) 
satisfied by 

where Q is a constant to be determined. Now to satisfy the boundary conditions 
at r = b we must have 

(5.13) 

(5.14) 

2P(b/a)Ba sinh 6 = Cbn + Qb-n, 

2P(b/a)Ba (/3 cosh [+ &a sinh 6) = nCbn - nQb-n, 

6 = pln @/a). where 
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Thus the ratios of P ,  Q and C are given by the two equations 

(5.15) I P(b/a)ta [ (n + *a) sinh 6 + p cosh 53 = nCbn, 

P(b/a)ta [(n - $a) sinh 6 - p cosh 61 = nQb-n. 

The free modes are given by C = 0, P + 0, and so 

(n + +a) sinh5 + cosh (/ln (bfa) = 0. (5.16) 

Since In (bfa) > 0, there are no real roots <; but when p and < are imaginary, say 
/3 = ip' and 6 = i<', (5.16) becomes 

g cot E' = - (n + Qa) In @/a). (5.17) 

We see that for each value of n there is an infinite sequence of possible roots 
EI, (i, . . . such that (m - Q) n < 6; < (m + 4) n. Each root 6; corresponds to a 
possible free mode, and so to a resonant condition. Moreover, from (5.10) we 
have n2 + naf/u + *a2 = - p ' 2 ,  (5.18) 

so that necessarily af f  < 0, (5.19) 

that is to say the free waves must progress clockwise round the island in the 
northern hemisphere (f > 0 )  and anticlockwise in the southern hemisphere. From 
(5.18) we have also 

(5.20) 

The term on the right attains its maximum value 1 when n = +a. Hence in all 
cases 1v/fl < 1, that is to  say the frequency of the free modes is always less than 
the inertial frequency. It may be shown that the corresponding stream function 

has exactly m zeros in the interval a < r < 00, as well as the zero at r = a. Outside 
r = a, ]$I decreases monotonically and tends to 0 as r + 00. The corresponding 
circulation is in m cells in the radial direction, 2n cells in the transverse direction. 

The relative frequencies aff of the free modes are shown in figure 5 as functions 
of b/a, for some typical values of the constant a. 

We are now in a position to calculate the mass transport velocities in both 
forced and free oscillations. From (3.6) it follows that the stream function $s 
for the Stokes velocity is given by 

$ s =---I- r 1 a$ a0 a$& ar (5.22) 

(5.23) 

In the free oscillations, $ has in general (m- 1) maxima and (m- 1) zeros in 
a < r < 00, so that / $ $ I 2  has ( 2 m - 2 )  maxima. Hence the Stokes velocity a$#r 
changes sign ( 2 m  - 2 )  times in a < r < CQ. 
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In the forced oscillations, we can calculate the Stokes velocity from (5.23). 
In particular, at  the perimeter of the island, where $vanishes we have from (5.23) 

(5.24) 

bla 

FIGUFLE 5 (a, a). For legend see p. 716. 
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In the important case n = 1, the total Stokes transport is given by the dif- 
ference between p$s a t  infinity and eS a t  T = a. Since $s vanishes a t  r = a, and 
when r > b, @@* = CC*r2 + (CQ* + C*Q) + QQ*r2, (5.25) 

u=2  

u=4 

b/a 

FIGURE 5. Graphs of the non-dimensional frequency ( ~ l f )  for some of the lower modes, 
plotted as a function of b/a. The symbol (m, n) denotes the mth mode with azimuthal 
wave-number n. (a) a = 4, ( b )  a = 1, ( c )  a = 2, (d )  a = 4. 
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it  follows from (5 .22)  that, as r -+ 00, 

$s -+ cc*/2u. (5 .26)  

This quantity has always the same sign as c. 
The angular momentum of the Stokes flow, on the other hand, is given by 

(5.27) 

FIGURE 6. Relative magnitude of the mass-transport velocity near the perimeter of the 
island in a typical case: a = 2, b/a = 4, showing the peaks at the resonant frequencies. 
The vertical scale on the right (a/f > 0) is ten times that on the left. 

I n  this expression $s may be replaced by ($s - $8-,,),  where $rSa denotes the limit 
in (5.26).  On integrating by parts, and using (5.22) and (5.24), we find 

(5.28) a.m. = - - (CQ* + C*Q). 

This quantity may be either positive or negative, depending on the sign of &. 
When the sides are vertical, we find from $ 3  that Q = - Ca2 and so 

TP 
u 

2npa2CC * 
u )  a.m. = (5.29) 

which has always the same sign as u. 
Consider now the Lagrangian mass-transport velocity u,. This will depend on 

the viscous boundary conditions on the bottom and the vertical wall, and in 
general also on the time since the motion was started. But, on the vertical wall of 
the island, the velocity just outside the oscillatory boundary layer is given simply 
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by (3.12), provided we now substitute qs = ( - a$/&),.,,. Since $is given by (8.4)) 
we have then 

(5.30) 

As before, the effect of viscosity is to multiply the mass-transport velocity near 
the perimeter of the island by the factor 512. 

As an example let us take a = 2, b/a = 4 and n = 1. Then figure 5 ( c )  indicates 
that we must expect resonance when a/f = - 0-396, - 0.125 and - 0.056, corre- 
sponding to the three lowest modes, rn = 1, 2 and 3 respectively. In  figure 6 we 
show a graph of the non-dimensional quantity, 

(5.31) 

This represents the relative magnification of the mass-transport velocity near 
the perimeter r = a, compared to the mass transport in the absence of a sur- 
rounding ‘skirt ’. The amplification of the mass-transport near resonance can 
be clearly seen. By contrast, the response of the island to waves progressing in 
the clockwise direction (rlf > 0) is remarkably small. 

In calculating the amplitude of the forced oscillations, we have of course 
neglected the dissipation of energy by viscosity and also the detuning of the 
oscillations due to the slight dependence of the frequency on the amplitude. Both 
these effects will act to limit the amplitude near resonance. 

6. Experimental verification (ii) 
The following experiment provided a qualitative verification of the effects 

described in § 5. 
A circular tank of diameter 18 in. and depth about gin. was fitted with a false 

wax bottom in the form of a parabola, curved so as to be parallel to the free 
surface when rotating in equilibrium at a speed of 0.25 c/s. Projecting from the 
bottom of the tank were three islands. Two of these were circular cylinders with 
vertical sides and diameters 1 in. and l& in. respectively (see figure 7) .  The third 
island was fitted with a ‘skirt’ corresponding to the parameters a = 2, b/a = 2. 
The tank was placed on a rotating turntable and filled to a depth of about 3 in. 
(so as to cover the curved part of the skirted island). Aluminium powder was 
scattered on the surface to facilitate viewing the surface velocities. 

The tank was then set in rotation a t  a speed of 0.25 CIS, and the relative motions 
were viewed through a rotascope. 

On reaching the spin-up velocity one might have expected at first to see no 
relative motion between the fluid and the rotating tank. On the contrary, small 
oscillations, having the same period as the rotation, were observed in the main 
body of the fluid, due to the fact that the axis of rotation was not perfectly 
aligned with the vertical. The rotation of the tank being in the positive (east- 
wards) sense, the effect was to produce a component of gravity rotating in the 
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negative (westwards) sense relative to the rotating tank. The frequency CT of the 
oscillation was thus given by 

since f is equal to twice the angular rate of rotation. 
Close to the islands, however, the most obvious feature of the motion was not 

the oscillatory motion so much as an intense d.c. component of flow directed 
anticlockwise round each island. The motion was more intense round the smaller 
of the two cylindrical islands. This is to be expected from (3.14)) in which the 
mass transport velocity is inversely proportional to the radius a of the island. 

The most intense current, however, was observed near the third island, the 
one with the skirt. A computation of the relative velocity (5.31) in the case a = 2,  
bla = 2 and Crlf = -4  shows that, for these values, the relative magnification 
is given by 

qlf = -1 2 ,  (6.1) 

It was not possible to measure the drift currents accurately in this experiment 
but the observations appeared to be consistent with the above ratio. Further 
experiments are a t  present in progress. 

7. Discussion 
Equation (3.14) indicates that the order of magnitude of the streaming velocity 

is inversely proportional to the radius a of the island. It follows that the smaller 
the island, the greater the streaming velocity, within the present approxima- 
tions. Hence a quite small island may be, as it were, a useful probe for detecting 
oscillatory motions in the surrounding ocean. 

It does not seem altogether fanciful to suggest that the drift velocities observed 
in the neighbourhood of Bermuda by Stommel (1954) may be partly attributed 
to mass-transport streaming associated with oscillations nearby. From figure 1 
of Stommel’s paper it appears that the particle tracks nearly all circulate that 
island in the clockwise sense, and with times comparable to 15 days, or about 
30 tidal cycles. If this is to be comparable with a2/5b2, where a is the mean radius 
of the island of Bermuda we must have b/a N 0.08, or, since a N 5 km, the half 
tidal displacement b must be of order 0.4 km. This is not inconsistent with what is 
known of the tidal currents in that area. 

This investigation was begun a t  Oregon State University, Corvallis, under 
NSF Grant No. GA-1452 and completed a t  the National Institute of Ocean- 
ography, England. The experiments described in $6  were carried out with the 
assistance of Steve Wilcox at Oregon State University, using a rotating turn- 
table and rotascope constructed at  N.I.O. The experiments in $4 were first 
performed at my home in Cambridge, and subsequently a t  Wormley. John 
Simpson held the stopwatch. 
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FIGURE 3. (a )  Amechanismfor oscillating a cylinder of radius 3 in. so that its axis describes 
a smaller cylinder of radius 4 in. The orientation of t.hc cylinder remains fixed. 

(b )  An experiment to measure t,he Lagrangian drift velocity near t,o the boundary of 
an oscillating cylinder, using t,he inechanisin of figure 3 (u). 
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